The Valve Wizard 


Applying local feedback in guitar amplifiers is fairly uncommon since most strive to maximise the available gain. It is practically de rigueur for hifi as it reduces distortion and output impedance, widens and flatten bandwidth, and high levels of gain are rarely needed. A stage with local feedback also makes quite a good mixer, which is useful for both guitar and hifi. The higher the opanloop gain (that is, the higher the gain before feedback is added) the greater the loop gain and therefore the greater the distortion reduction and other benefits. Higher loop gain also makes the simplified formulae more accurate. High mu valves such as the ECC81 (12AT7) and ECC83 (12AX7) are therefore often used. Design begins in the same way as for a typical triode gain stage.
Choose a suitable HT and anode load (Ra), usually in the region of 100k, or whatever value gives fairly high gain without being
so large that it will be too easily loaded by the feedback components.
Draw a load line:
Next choose a bias point in the usual way. In this case 1V looks good, for a quiescent anode current of 1.2mA.
Use Ohm's law to find the value of bias resistor (Rk):
Although the cathode could be left unbypassed it would reduce the openloop gain and increase the output impedance, so we should add a cathode bypass capacitor. The capacitor needs to have a low reactance at all audio frequencies or phase shift and reduced openloop gain
will impare stability and introduce weird resonance effects. For a low rolloff of 10Hz:
Openloop gain and output impedance:
We can now calculate the openloop gain of the stage, either from the load line or by using the formula:
Also find the output impedance from the anode before feedback is applied, using:
Applying feedback: We can now find values for the grid resistor (Rg) and feeback resistor (Rf)
if we know what closedloop gain we want to end up with. If we would like a closedloop gain of 10, we could either
choose Rg or Rf first.
We can now use more accurate formulae to find out what the true performance of the circuit will be:
The input impedance will be: This is usually approximated as Zin = Rg. This low input impedance is one of the major drawbacks of this circuit, since it would need to be driven from a fairly low impedance source. We could increase Rg and Rf greatly to improve things, but that would increase resistor noise. Therefore the circuit is most useful when set to very low levels of closedloop gain (e.g., less than 5) so that Rg can approach 1Meg. The true gain of the stage will be:
Coupling capacitors: The output coupling capacitor should not be used to control the output frequency
response as it normally could, because this can cause weird resonance effects or ringing, because it is within the feedback loop.
The lowroll of the stage can be set with the input coupling capacitor, which is chosen in conjunction with the input impedance. 