Contents

Preface ix
Acknowledgements xi

1. Essential Electronics 1

1.1: Current 2
1.2: Voltage 5
1.3: Power 6
1.4: Signals and Averages 7
 1.4.1: Mean Average 7
 1.4.2: Rectified Average 8
 1.4.3: RMS Average 8
1.5: Complex Numbers 9
 1.5.1: Complex Arithmetic 11
1.6: Phasors 12
1.7: Fourier’s Theorem 14
1.8: Resistance and Ohm’s Law 17
 1.8.1: Resistance in Series and Parallel 17
1.9: Capacitance 18
 1.9.1: Capacitive Reactance 21
 1.9.2: Capacitors in Series and Parallel 22
1.10: Inductance 22
 1.10.1: Inductive Reactance 24
 1.10.2: Inductors in Series and Parallel 24
1.11: Impedance 25
1.12: Kirchoff’s Voltage Law 27
1.13: Kirchoff’s Current Law 27
1.14: Sources 28
 1.14.1: Voltage and Current Sources 28
 1.14.2: Dependent Sources 29
1.15: Thévenin’s Theorem 30
1.16: Norton’s Theorem 31
1.17: Potential Dividers 31
1.18: Current Dividers 33
1.19: The Principle of Superposition 34
1.20: Linear Circuit Analysis 35
1.21: Resonance 37
1.22: Filters 39
 1.22.1: Bode Plots 45
 1.22.2: Phase Delay 47
1.23: Step Response 50
1.24: Negative Feedback 53
 1.24.1: The Universal Feedback Equation 54
2. Practical Components

2.1: Resistors
2.1.1: Resistance
2.1.2: Tolerance
2.1.3: Power Rating
2.1.4: Voltage Rating
2.1.5: Excess Noise
2.1.6: Temperature Coefficient
2.1.7: Parasitics
2.1.8: Metal Film
2.1.9: Metal Oxide
2.1.10: Carbon Film
2.1.11: Carbon Composition
2.1.12: Wirewound
2.1.13: Fusible / Flameproof Resistors
2.1.14: Potentiometers

2.2: Capacitors
2.2.1: Capacitance
2.2.2: Tolerance
2.2.3: Voltage Rating
2.2.4: Leakage
2.2.5: ESR
2.2.6: Loss Tangent / Dissipation Factor
2.2.7: Ripple Current
2.2.8: Dielectric Absorption
2.2.9: Parasitics
2.2.10: Air
2.2.11: Silvered Mica
2.2.12: Ceramic
2.2.13: Plastic / Film
2.2.14: Aluminium Electrolytic
2.2.15: Tantalum

2.3: Inductors
2.3.1: Distortion
2.3.2: Parasitics
2.3.3: Ferrite Beads

2.4: Power Transformers
2.4.1: VA (Power) Rating
2.4.2: Regulation
2.4.3: Phasing
2.5: Small-Signal Transformers 92
 2.5.1: Turns and Impedance Ratios 93
 2.5.2: Source and Load Impedances 93
 2.5.3: Parasitics 94
 2.5.4: Distortion 96

2.6: Valves 97
 2.6.1: The Anode 98
 2.6.2: The Grids 99
 2.6.3: The Cathode 100
 2.6.4: The Heater 102
 2.6.5: Electrostatic Shields 103
 2.6.6: The Getter 103
 2.6.7: The Mica Spacers 104
 2.6.8: Variable-Mu / Remote Cut-off Valves 104
 2.6.9: Valve Ratings 104
 2.6.10: Anode Voltage Rating 105
 2.6.11: Anode Dissipation Rating 105
 2.6.12: Heater Voltage and Current Rating 106
 2.6.13: Heater-Cathode Voltage Rating 108
 2.6.14: Heater-Cathode Resistance Rating 109
 2.6.15: Grid Voltage Ratings 109
 2.6.16: Grid Dissipation Ratings 110
 2.6.17: Grid Current 110
 2.6.18: Grid-Leak Resistance Rating 112

3. Fundamentals of Amplification 113

 3.1: Basic Theory of Valves 113
 3.1.1: Valve Diodes 114
 3.1.2: Triodes 115
 3.2: The Valve Constants 117
 3.2.1: Anode Resistance, r_a 118
 3.2.2: Amplification Factor, μ 119
 3.2.3: Transconductance, g_m 120
 3.3: Amplification 121
 3.3.1: The Load Line 121
 3.3.2: Biasing 123
 3.3.3: The Cathode Load Line 125
 3.3.4: Resistor Ratings 127
 3.3.5: The Safe Operating Area 127
 3.4: Distortion and the Transfer Function 129
 3.4.1: Harmonic Distortion 130
 3.4.2: Intermodulation Distortion 132
 3.5: Clipping and Headroom 133
 3.6: The Effect of Load on Distortion 136
 3.6.1: The Golden Ratio 137
3.6.2: The AC Load Line 138
3.7: The Cathode Bypass Capacitor 140
3.8: Equivalent Circuits 143
 3.8.1: Gain Equations 144
3.9: Impedance Matching and Bridging 146
 3.9.1: Output Impedance 147
 3.9.2: Input Impedance and the Miller Effect 149
3.10: Oscillation and Stoppers 150
3.11: Slew Rate and Reactive Loads 152
3.12: Power Supply Rejection Ratio, PSRR 156
3.13: Coupling 158
 3.13.1: Blocking Distortion 159
 3.13.2: Minimising Blocking Distortion 161
 3.13.3: DC Coupling 162
 3.13.4: Grid-Cathode Arc Protection 163
 3.13.5: Level Shifting 164

4. The Small-Signal Pentode 166
 4.1: The Screen Grid 166
 4.1.1: Secondary Emission 167
 4.1.2: The Suppressor Grid 167
 4.2: The Effect of Screen Voltage 168
 4.3: The Effect of Screen Current 170
 4.3.1: The Anode/Screen Current Ratio 171
 4.4: Deriving Grid Curves for any Screen Voltage 172
 4.5: Basic Design Equations 173
 4.5.1: The Effect of Screen and Cathode Bypassing 175
 4.6: A Traditional Pentode Gain Stage 176
 4.6.1: The Effect of Cathode Degeneration 178
 4.6.2: The Effect of Screen Degeneration 179
 4.6.3: The Effect of Load on Distortion 180
 4.7: Designing a Pentode Stage the Easy Way 182
 4.8: Pentodes Connected as Triodes 185
 4.8.1: Low-Capacitance Mode 186

5. Noise, Hum and Microphony 188
 5.1: Noise 188
 5.1.1: Johnson or Thermal Noise 189
 5.1.2: Shot Noise 190
 5.1.3: Flicker or Excess Noise 191
 5.1.4: Adding Noise Sources 192
 5.1.5: Equivalent Input Noise 193
 5.1.6: Noise Bandwidth 194
 5.1.7: Noise Spectral Density 195
 5.1.8: Noise Weighting 197
5.2: Noise in Resistors 198
5.3: Noise in Triodes 199
 5.3.1: EIN Spectral Density 201
 5.3.2: Total EIN 203
5.4: Noise in Pentodes 206
5.5: Noise in Bipolar Transistors 208
5.6: Noise in Field Effect Transistors 209
5.7: Noise in Diodes 210
5.8: Noise Calculations 211
 5.8.1: Triode Gain Stage 211
 5.8.2: Parallel Valves 214
 5.8.3: Principles of Low-Noise Design 215
5.9: Hum 215
 5.9.1: Electric Fields 216
 5.9.2: Magnetic Fields 216
 5.9.3: Transformers and Hum 216
 5.9.4: Electric Shielding 217
 5.9.5: Magnetic Shielding 218
 5.9.6: Lead Dress 218
5.10: Microphony 220

6. Advancements in Amplification 221
 6.1: Current-Source Loading 221
 6.1.1: Triode Current Source 222
 6.1.2: Simple BJT Current Source 224
 6.1.3: Cascode BJT Current Source 226
 6.1.4: FET Current Sources 228
 6.2: Valve Distortion Measurements 230
 6.2.1: ECC81 / 12AT7 232
 6.2.2: ECC82 / 12AU7 234
 6.2.3: ECC83 / 12AX7 236
 6.2.4: ECC84 / 6CW7 237
 6.2.5: ECC88 / 6DJ8 239
 6.2.6: 6K52II / 6J52P 240
 6.2.7: 6SN7GT 241
 6.2.8: Summary 242
 6.3: Diode Biasing 243

7. The Cathode Follower 247
 7.1: Design Equations 247
 7.1.1: Gain 248
 7.1.2: Input Impedance 249
 7.1.3: Output Impedance 251
 7.1.4: PSRR 253
7.2: Noise 254
7.3: Oscillation and Stoppers 254
7.4: Anode Characteristics 256
 7.4.1: Using the New Anode Characteristics 257
7.5: Cathode Bias 259
7.6: Fixed Bias 261
7.7: DC Coupling 264
7.8: Distortion Cancellation 266
7.9: The Bootstrapped Pair 267
7.10: The Constant-Current-Draw Amplifier 270
7.11: Transistor Followers 273
7.12: Active Loading 274
7.13: Output Voltage Limiting 275
7.14: Compound Cathode Followers 278
 7.14.1: Feed-forward Noise Cancellation 279
 7.14.2: The White Cathode Follower 281
 7.14.3: A Transformerless Headphone Driver 284

8. Compound Amplifiers 288
8.1: Totem-Pole Gain Stages 288
 8.1.1: The Half-µ Stage 288
 8.1.2: The SRPP 293
 8.1.3: The µ-Follower 299
 8.1.4: The Cascode 304
8.2: The Cathode-Coupled Amplifier 309

9. Controls 315
9.1: Source Selection 315
9.2: Volume Control 316
 9.2.1: Potentiometers 317
 9.2.2: Stepped Attenuators 319
 9.2.3: Relay Attenuators 321
9.3: Balance Control 321
9.4: Tone Controls 324
 9.4.1: Passive James/Baxandall Tone Controls 325
 9.4.2: Passive Tilt Control 328
 9.4.3: Active James/Baxandall Tone Controls 330
 9.4.4: Active Tilt Control 333

10. The Phono Stage 335
10.1: RIAA Equalisation 335
 10.1.1: The IEC Amendment 336
 10.1.2: The Neumann Fallacy 337
11.6.3: Decoupling 395
11.6.4: LC Versus RC Filters 396
11.6.5: The Gyrator or Simulated Inductor 398
11.6.6: The Capacitor Multiplier 399

11.7: Voltage Regulation 400
 11.7.1: Linear Regulator ICs 400
 11.7.2: Adjustable Regulators 402
 11.7.3: Low-Dropout Regulators 403
 11.7.4: Switching Regulators 404
 11.7.5: High-Voltage Regulators 405
 11.7.6: Heatsinking 409

11.8: Heater Supplies 412
 11.8.1: Rectifier-Induced Hum 412
 11.8.2: Electrical Heater Balancing 413
 11.8.3: Heater Elevation 414
 11.8.4: Common-Mode Noise 415
 11.8.5: DC Heater Supplies 416
 11.8.6: Accommodating Different Heaters 418

11.9: Back-to-Back Transformers 420
11.10: Reducing Primary Voltage 421
11.11: Transformerless Supplies 422
11.12: External Power Supplies 423